Differential Geometry: Reflections generate an isometry

Professor Jyotshana V. Prajapat

January 5, 2019

Theorem 0.1. An isometry of \mathbb{R}^n is product (composition) of atmost n + 1 reflections.

Proof. We give proof by induction For n = 2 we know that the orthogonal transformations of \mathbb{R}^2 are described as either

$$\rho_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

which are rotation by angle θ in anti-clockwise direction and

$$R_{\theta} = \begin{pmatrix} -\cos\theta & \sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$

which are reflections with respect to the line $\mathbb{R}(\cos\theta/2, \sin\theta/2)$ (verify).

Given an isometry i of \mathbb{R}^2 , let i(0) = v and T be a reflection of \mathbb{R}^2 which maps v to 0 (Ex. Write explicit expression for such T). Then $T \circ i$ is an isometry of \mathbb{R}^2 which fixes origin and hence is an orthogonal transformation. Therefore $T \circ i = \rho_{\theta}$ or $T \circ i = R_{\theta}$ for some θ . Since a rotation is composition of two reflections $\rho_{\theta} = R_{2\theta} \circ R_{\theta}$, we get either $i = T \circ R_{2\theta} \circ R_{\theta}$ or $i = T \circ R_{\theta}$ and result is true for \mathbb{R}^2 .

By induction, assume that an isometry of \mathbb{R}^k can be written as composition of atmost k + 1 reflections for any $k \leq n$. Let $i : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be an isometry and $\{e_1, \ldots, e_{n+1}\}$ denote the standard basis of \mathbb{R}^{n+1} . Let T be a reflection of \mathbb{R}^{n+1} which maps $i(e_{n+1})$ to e_{n+1} . Then $T \circ i$ is an isometry of \mathbb{R}^{n+1} which fixes the basis vector e_{n+1} .

Claim: $T \circ i \mid_{\mathbb{R}^n} : \mathbb{R}^n \to \mathbb{R}^n$ is an isometry of \mathbb{R}^n . Proof of Claim : Ex.

Thus $T \circ i \mid_{\mathbb{R}^n}$ is a product of at most n+1 reflections, say $T \circ i \mid_{\mathbb{R}^n} = R_1 \circ \ldots \circ R_k, k \leq n+1$. Note that any reflection R_i of \mathbb{R}^n can be extended to a reflection of \mathbb{R}^{n+1} by defining

$$R_i(v_1, \ldots, v_n, v_{n+1}) = (R_i(v_1, \ldots, v_n), v_{n+1})$$

For if $R : \mathbb{R}^n \to \mathbb{R}^n$ is a reflection with respect to a hyperplane W with $u \in \mathbb{R}^n$ normal to W defined by

$$R(v) = v - 2 < v, u > u$$

then defining $\tilde{R}: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ as

$$\tilde{R}w = Rw' + w_0 e_{n+1}$$

where we write $\mathbb{R}^{n+1} = \mathbb{R}^n \oplus \mathbb{R}$ and $w \in \mathbb{R}^{n+1}$ is written as $w = w' + w_0 e_{n+1}$ with $w' \in \mathbb{R}^n$, $w_0 \in \mathbb{R}$. Then $\tilde{R}w = Rw' + w_0 e_{n+1} = w' - 2 < w', u > u + w_0 e_{n+1} = w - 2 < w, u > u$ is reflection with respect to the hyperplane $W \oplus \mathbb{R}$. Here u sits in \mathbb{R}^{n+1} as $u + 0e_{n+1}$. Thus, $i = T \circ \tilde{R}_1 \circ \ldots \circ \tilde{R}_k, k \leq n+1$ and the proof is complete.