THEOREM 0.1. Let f be a function defined on a rectangle
R:= {(tuy) : |t_t0| <a, |y_y0| < b}7 a, b>0.

such that
(i) f is bounded on R, i.e., there exists M > 0 such that |f(t,y)| < M for all (t,y) € R;
(i) f is Lipschitz continuous in variable y, uniformly in t i.e., there exists L > 0 such that

|f(t,y1) — f(t,y2)| < Llyy — o for all |t —to| < a.

Then for e < min{, L3}, there exists a unique function y: (to — &, tg + ) — R which is a
solution to the initial value problem

B = fty®)
y(to) = o } (01)

The uniqueness is in the sense that if § defined on an interval (to — n,to + 1) is another
solution of IVP (0.1) then

§(z) = y(x) for all z € (tg —n,to +n) N (to — €, + €).

Proof. Step I: A function y : (tg — €,ty + €) — IR is a solution to the differential equation
(0.1) iff it is a solution of the integral equation

y@:%+[U@mmm. (0.2

For if y is a solution of (0.1) then integrating from ¢y to ¢ we get

[ = [ st

yw—mm:[f@mw@

which is (0.2). Conversely, let y solves the integral equation (0.2). Then y(ty) = yo and by
fundamental theorem of integral calculus, y is differentable and its derivative is given by

dy

()

and hence

Step II: Existence of solution- Picard’s iteration scheme
Define functions yo(t) = yo for all ¢, y; as

t t
nlt) =wt [ Fom(e)ds =+ [ Flsw)ds,
to to
and functions y; which are iteratively defined as
t
yr(t) = yo +/ f(s,yk_1(s)) ds. (0.3)
to

By Fundamental theorem of integral calculus, the functions {y;} are differentiable.
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Claim 1: There exists €1 > 0, independent of k, such that (f,yx(t)) € R for all ¢t €
(to — &1, to -+ 81).
Proof of Claim 1: We have

e —wol = | / £(5, g (s)) ds

(s, yk-1(s)) ds|

to

< Mt —tol.

IN

Thus if we choose g, < %, then |yx(t) — yo| < b for all t € (ty — e1,to + 1) and the claim
follows.

Claim 2:(Convergence of successive approximations) The sequence {y;} converges
uniformly to a function y in an interval (ty —e,ty +¢) for 0 < e < e;.
Proof of Claim 2: Note that

() = o] < [ (Flovanls)) ds < Mt~ to

to

and that

) — ()] = | / (5, 01(5)) — F(s,90(s))} dsl
< /!fsyl ~ f(s,90(s))] ds

Ex. Prove by induction
Ln<t _ t[))n+1
i (t) —y, ()] < M=

Thus, for m > n we have

[Ym () — yn(t)] < Iym()—ym 1()|+Iym-l(t)—ym—2(t)|+---+\yn+1(t)—yn(t)!

_Z t—to

_ %wm —S,) (0.4)
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where S, = ). M is the nth partial sum of the exponential series e“(*=*) which con-
k=0
verges for all values of (¢ — to) and in particular for |t — ty| < a. Note that

Yn(t) = (yn(t)—yn 1(8) + (Yn-1(t) = Yn—2(t)) + ... + (1 (t) — yo(t)) + yo(t)

= +Zyk; ) = Yk-1(t))

and (0.4) shows that the partial sums of the series yo(t)+ > (yr(t) —yr—1(t)) is dominated by
k=

the partial sums of the series for eZ(=%) for all . Thus, the series yo(t) + Z (yr(t) — yr—1(t))

converges absolutely for [t —ty| < 1 and converges to a function denoted by y( ) for [t —to] <
1.

Thus y,(t) — y(t) for |t — to| < 1 pointwise. This convergence is uniform since,

() —y()] = | Z ye(t) = yr-1(1))]

k=n-+1
M K (L)t —to])*
= L 2 k!
k=n+1
< = MLt — T,
k=n-+1

n
where T, = Y [L]:,] is the nth partial sum of the exponential series e*. Since |e*t —T,,| — 0
k=0

as n — 0o, independent of ¢, it follows that y, converges uniformly to y on (tg — &1,to + €1)

Claim 3: y is a solution of the IVP.

Proof of Claim 3: Since yg(ty) = yo for all k, taking limit as k — oo we get y(ty) = Yo-
Furthermore, observe that the sequence of functlons {fx}x where fr(s) = f(s,yr(s)) is
uniformly convergent. To see this, consider

[fm(8) = fu(s)| = | F(5,ym(s)) — f(s,4n(5))] < Llym(s) = yn(s)]-

Since {yx} is uniformly convergent for |t — t5| < & and hence uniformly Cauchy sequence,
it follows that {fx}x is uniformly Cauchy sequence and hence is uniformly convergent for
|t —to] < e . Moreover,

[fm(s) = f(s,9(s))| = |f(s,ym(s)) = f(s,9(s))] < Llym(s) = y(s)]

implies that f,,(t) — f(¢,y(¢) uniformly for |t — ¢y| < €. Taking limit as k& — oo in (0.3) we
get

) =+ Jim [ Fsn)ds =+ [ Jim fsm()ds =+ [ fls.(s)ds
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Thus y(¢) is solution of the IVP for |t — ty| < € where ¢ < min{a, & }.

Remark: Note that for the existence of solution it suffices to choose € < %, however, the

1,2} as can be seen below-

proof of uniqueness requires € < min{
Step III: Uniqueness

Let y defined on (ty—¢, to+e) for some 0 < & < min{+, £} as obtained above and § defined on
(to—9,to+9) for some § > 0 be solutions of the IVP (0.1). Let I = (to—¢, to+e)N(to—3, to+9)
and suppose there exists t; € I such that y(¢1) # 7(t1). Thus sup,.; |y(s) — g(s)| = mo(say)
is strictly positive. Since both y and g are solutions of the IVP and hence of the integral

equation (0.3) we have

ly(t) —5(0)] = I/(f(say(S))—f(&@(S)))dS!

< / F(s.9(s)) — F(5 ()] ds

IN

L / 1y(s) — i(s)| ds

IN

Lit = ta]sup ly(s) = 5(5)

S LEmo.

Taking supremum on l.h.s. as t varies in I we get mg < Lemy, i.e., 1 < Le. But we chose ¢
such that ¢ < %, thus we obtain a contradiction. Hence my =0 and y = ¢ on I.



