
THEOREM 0.1. Let f be a function defined on a rectangle

R := {(t, y) : |t− t0| < a, |y − y0| < b}, a, b > 0.

such that
(i) f is bounded on R, i.e., there exists M > 0 such that |f(t, y)| ≤M for all (t, y) ∈ R;
(ii) f is Lipschitz continuous in variable y, uniformly in t i.e., there exists L > 0 such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2| for all |t− t0| < a.

Then for ε < min{ 1
L
, b

M
}, there exists a unique function y : (t0 − ε, t0 + ε)→ R which is a

solution to the initial value problem
dy
dt

= f(t, y(t))
y(t0) = y0.

}
(0.1)

The uniqueness is in the sense that if ỹ defined on an interval (t0 − η, t0 + η) is another
solution of IVP (0.1) then

ỹ(x) = y(x) for all x ∈ (t0 − η, t0 + η) ∩ (t0 − ε, t0 + ε).

Proof. Step I: A function y : (t0 − ε, t0 + ε) → IR is a solution to the differential equation
(0.1) iff it is a solution of the integral equation

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds. (0.2)

For if y is a solution of (0.1) then integrating from t0 to t we get∫ t

t0

dy

dt
=

∫ t

t0

f(s, y(s)) ds

and hence

y(t)− y(t0) =

∫ t

t0

f(s, y(s)) ds

which is (0.2). Conversely, let y solves the integral equation (0.2). Then y(t0) = y0 and by
fundamental theorem of integral calculus, y is differentable and its derivative is given by

dy

dt
= f(t, y(t)).

Step II: Existence of solution- Picard’s iteration scheme
Define functions y0(t) = y0 for all t, y1 as

y1(t) = y0 +

∫ t

t0

f(s, y0(s)) ds = y0 +

∫ t

t0

f(s, y0) ds,

and functions yk which are iteratively defined as

yk(t) = y0 +

∫ t

t0

f(s, yk−1(s)) ds. (0.3)

By Fundamental theorem of integral calculus, the functions {yk} are differentiable.
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Claim 1: There exists ε1 > 0, independent of k, such that (t, yk(t)) ∈ R for all t ∈
(t0 − ε1, t0 + ε1).
Proof of Claim 1: We have

|yk(t)− y0| = |
∫ t

t0

f(s, yk−1(s)) ds|

≤
∫ t

t0

|f(s, yk−1(s)) ds|

≤ M |t− t0|.

Thus if we choose ε1 <
b
M

, then |yk(t) − y0| < b for all t ∈ (t0 − ε1, t0 + ε1) and the claim
follows.

Claim 2:(Convergence of successive approximations) The sequence {yk} converges
uniformly to a function y in an interval (t0 − ε, t0 + ε) for 0 < ε ≤ ε1.
Proof of Claim 2: Note that

|y1(t)− y0(t)| ≤
∫ t

t0

(f(s, y0(s)) ds ≤M(t− t0)

and that

|y2(t)− y1(t)| = |
∫ t

t0

{f(s, y1(s))− f(s, y0(s))} ds|

≤
∫ t

t0

|f(s, y1(s))− f(s, y0(s))| ds

≤ L

∫ t

t0

|y1(s)− y0(s)| ds

≤ LM

∫ t

t0

(s− t0) ds

= LM
(t− t0)2

2
.

Ex. Prove by induction

|yn+1(t)− yn(t)| ≤M
Ln(t− t0)n+1

(n+ 1)!

Thus, for m ≥ n we have

|ym(t)− yn(t)| ≤ |ym(t)− ym−1(t)|+ |ym−1(t)− ym−2(t)|+ . . .+ |yn+1(t)− yn(t)|

≤ M

L

m∑
k=n

[L(t− t0)]k

k!

=
M

L
(Sm − Sn−1) (0.4)
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where Sn =
n∑

k=0

[L(t−t0)]k
k!

is the nth partial sum of the exponential series eL(t−t0) which con-

verges for all values of (t− t0) and in particular for |t− t0| ≤ a. Note that

yn(t) = (yn(t)− yn−1(t)) + (yn−1(t)− yn−2(t)) + . . .+ (y1(t)− y0(t)) + y0(t)

= y0(t) +
n∑

k=1

(yk(t)− yk−1(t))

and (0.4) shows that the partial sums of the series y0(t)+
∞∑
k=1

(yk(t)−yk−1(t)) is dominated by

the partial sums of the series for eL(t−t0) for all t. Thus, the series y0(t) +
∞∑
k=1

(yk(t)− yk−1(t))

converges absolutely for |t−t0| < ε1 and converges to a function denoted by y(t) for |t−t0| <
ε1.

Thus yn(t)→ y(t) for |t− t0| < ε1 pointwise. This convergence is uniform since,

|yn(t)− y(t)| = |
∞∑

k=n+1

yk(t)− yk−1(t))|

≤ M

L

∞∑
k=n+1

(L|t− t0|)k

k!

≤ ML
∞∑

k=n+1

(La)k

k!
= ML|eaL − Tn|

where Tn =
n∑

k=0

[La]k

k!
is the nth partial sum of the exponential series eaL. Since |eaL−Tn| → 0

as n→∞, independent of t, it follows that yn converges uniformly to y on (t0 − ε1, t0 + ε1)

Claim 3: y is a solution of the IVP.
Proof of Claim 3: Since yk(t0) = y0 for all k, taking limit as k → ∞ we get y(t0) = y0.
Furthermore, observe that the sequence of functions {fk}k where fk(s) = f(s, yk(s)) is
uniformly convergent. To see this, consider

|fm(s)− fn(s)| = |f(s, ym(s))− f(s, yn(s))| ≤ L|ym(s)− yn(s)|.

Since {yk} is uniformly convergent for |t − t0| < ε and hence uniformly Cauchy sequence,
it follows that {fk}k is uniformly Cauchy sequence and hence is uniformly convergent for
|t− t0| < ε . Moreover,

|fm(s)− f(s, y(s))| = |f(s, ym(s))− f(s, y(s))| ≤ L|ym(s)− y(s)|

implies that fm(t)→ f(t, y(t) uniformly for |t− t0| < ε. Taking limit as k →∞ in (0.3) we
get

y(t) = y0 + lim
k→∞

∫ t

t0

f(s, yk(s)) ds = y0 +

∫ t

t0

lim
k→∞

f(s, yk(s)) ds = y0 +

∫ t

t0

f(s, y(s)) ds.
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Thus y(t) is solution of the IVP for |t− t0| < ε where ε < min{a, b
M
}.

Remark: Note that for the existence of solution it suffices to choose ε < b
M

, however, the

proof of uniqueness requires ε < min{ 1
L
, b
M
} as can be seen below-

Step III: Uniqueness
Let y defined on (t0−ε, t0+ε) for some 0 < ε < min{ 1

L
, b
M
} as obtained above and ỹ defined on

(t0−δ, t0+δ) for some δ > 0 be solutions of the IVP (0.1). Let I = (t0−ε, t0+ε)∩(t0−δ, t0+δ)
and suppose there exists t1 ∈ I such that y(t1) 6= ỹ(t1). Thus sups∈I |y(s)− ỹ(s)| = m0(say)
is strictly positive. Since both y and ỹ are solutions of the IVP and hence of the integral
equation (0.3) we have

|y(t)− ỹ(t)| = |
t∫

t0

(f(s, y(s))− f(s, ỹ(s))) ds|

≤
t∫

t0

|f(s, y(s))− f(s, ỹ(s))| ds

≤ L

t∫
t0

|y(s)− ỹ(s)| ds

≤ L|t− t0| sup
s∈I
|y(s)− ỹ(s)|

≤ Lεm0.

Taking supremum on l.h.s. as t varies in I we get m0 ≤ Lεm0, i.e., 1 ≤ Lε. But we chose ε
such that ε < 1

L
, thus we obtain a contradiction. Hence m0 = 0 and y ≡ ỹ on I.


