Theorem 0.1. (Ezistence of e-approximate solution ) Let f be a continuous function defined
on the rectangle

R:={(t,y) : [t —to] < a, |y —yo| < b}.

Given € > 0 there exists an e-approrimate solution ¢ of the initial value problem
@ = f(ty)
(0.1)
y(to) = wo
defined on an interval I = (to,n,to +n) such that
lp(t) —@(s)| < M|t —s| forall s;tel (0.2)
where M = supy |f(t,y)], i.e., ¢ is Lipshcitz continuous on I.

Proof. Recall that ¢ is said to be an e- approximate solution of (0.1) on an interval I if

(i) ¢ is continuous on I with (¢, p(t)) € R;

(i) ¢ is C' on I except possibly on a finite set of points S on I, where ¢’ may be discontinuous;
(iii) @' (t) — f(t,o(t))] < e on I\ S. We will construct a piecewise linear £ approximate
solution. First, the solution will be constructed to the right of .

Step I: Draw a line segment
1(s) = yo + f(to, y0)(t — to)
through the point (o, yo). We see that [(s) € R if
|s —to] <a (0.3)

and
11(s) — yo| = | f(to, yo)||t — to| < M|t —to] < M5 <b

if we choose 7 < minf{a, & }. Now consider the interval I = [to—7,to+7]. Since R closed and
bounded set and f is continuous on R and thus uniformly continuous. Hence given ¢ > 0,
there exists 0; > 0 such that

|f(t,y) — f(s,x)] <e whenever [t—s|<dy,|y—x| <. (0.4)
Let 5
§ < min{éy, MI} (0.5)

Divide the interval [to, tp + 7] into subintervals of length less than ¢ by choosing points

to<ti <ta<...<tlp=10+n7m



such that |t; —t;_1| < d for each i = 1,...,n. Define
pi1(s) = U(s) =yo+ f(to,yo)(t —ty) for tm<s<t

QOQ(S) = N + f(tl, y1>(t — tl) for s < [tl, tQ] where Y1 = Y1 (tl)

In general, denote y;_1 = p;_1(t;—1) and define

QOZ(S) =Yi—1 + f(ti—la %—1)(75 — ti—l) for s e [ti—la tz] for = 1,...,n. (08)
Let

o(s) =pi(s) for seftq.t;], 1<i<n. (0.9)
Step II ¢ is an e- approximate solution of (0.1). Let s,t € I and s € [t;_1,t], t € [tj_1,1;]
with 7 < j.
o(t) — ¢(s)|
t) — o(ti—) + le(tj-1) — o(t—2)[ + .. + |o(t:) — @(s)]

o
-, yi- ) = ti—) + [f (-2, yj-2)[(t-1 — tj—2) + . + [ f(imr, i) [(8i — )
Mt — s) (0.10)
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In particular, ¢ is continuous. Also, from definition since ¢ = ; on [t;_1,1;], ¢ is C* on I\ S
where S = {t1,ts,...,t, = to — n}. From (0.10) and since n < 2 it follows that

(t,p(t)) € R forall tel.

For s € I, say s € [ti_1,t:], ¢'(s) = ¢i(s) = f(ti—1,¥i—1) = [(ti=1, ¢(ti—1)) and hence

£'(s) = f(s,0(s))| = | f(tim1, p(timn)) — f(s,00(s))| < € (0.11)
since
|pi(s) = @(tim1)| < Ms — 11| < b
Similarly, ¢ can be extended to the left of ¢. O

Lemma 0.2. (Ascoli’s lemma) Let I be a bounded interval and F = {f} be an infinite,
uniformly bounded, equicontinuous set of functions. Then F contains a sequence {f,}, n =
1,2,3,... which is uniformly convergent on I.

Proof: List the rationals in Q as {ry}, ¥ = 1,2,3,.... Let Ay = {f(r1) : [ € F,k =
1,2,3,...}. Since F is uniformly bounded, there exists M > 0 such that

|f(x)| <M forall zel, foral felF. (0.12)
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Then A; is an infinite set of real numbers bounded in I and hence has a convergent subse-
quence, say fi1(r1), foi(r1), fs1(r1), ... fra(r1).... Let

F1 = {fr1} ke

Again, Ay := {fk1(r2) : k = 1,2,3,...} is a bounded set of real numbers and hence has a
convergent subsequence, { fra}ren. Let

Fo = {frabrerw C Fi.
Continuing thus we obtain sets
Fi=A{fujtkew CF;-1 CFjaC...CF CF
with the property that
{fxj(ri)} is convergent for all i < j. (0.13)
Now define the sequence of functions
fe=fur, E=1,2,3,.... (0.14)

Claim: {fx}ren is uniformly convergent on 1.
We show that {f} is uniformly Cauchy sequence. Since F is equicontinuous, given ¢ > 0
there exists 0 > 0 such that

lr—y| <d = |f(x)— f(y)| <e forall feF. (0.15)
Let x € I and r; € Q such that
|z — ;| < 0.
Then
[fe(@) = filr;)] <e.

Also, since {fi(r;)}x = {fur(r;)}x is convergent for all k& > j, given € > 0 there exists ng
such that for all m, n > ny,

|fm(rj> - fn(rj)| <Eé.

Thus, for m, n > ng

() = fin ()]

|fn(x) - fn(rj) + fn<rj> - fm(rj> + fm<rj) - fm(x”
|fn(x) - fn(rj)’ + |fn(rj) - fm<7aj)‘ + ‘fm(rj) - fm(x)|
eEt+e+e=3e.
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Theorem 0.3. (Cauchy-Peano Existence theorem:) If f is a continuous function on a
rectangle R, then there exists a solution o € C* of (0.1) on |t —to| < n for which p(ty) = yo-

Proof. Let ¢, > 0 denote a decreasing of positive numbers such that ¢, — 0. Let ¢,
denote e,-approximate solution of (0.1) which exists on an interval I = [ty — 7,y + 7] where
n = min{a, £} from Theorem 0.1 which was contructed as piecewise linear path as

On(s) = @ni(s) for seftiti], 1<i<n (0.16)
where

pna(s) = U(s) =wo+ flto,yo)(t —to) for to<s<t (0.17)
Yon(s) = w1+ f(ti,y1)(t —t1) for s € [t1,ta] where y; = ¢1(t1) (0.18)

in general, denote y;_1 = ¢;_1(t;—1) and define
‘;On,i(s) = Yi—1 + f(t’i—ly yz—l)(t — ti—l) fOI' S € [ti—la tl} fOI' 7= 1, oo, n. (019)

Here S, is a finite set of points where the function ¢,, is discontinuous. For all n, each ¢,
satisfies
lon(t) — @n(s)| < M|t —s| forall s;tel (0.20)

where M = sup|f(¢,y)], i.e., , is Lipshcitz continuous on /. In particular, for ¢t € I,
R

[0n ()] = [on(t) = n(to) + @ulto)] < |on(t) — @n(to)] + |@n(to)]
< Mt —to] + |en(to)] < Mn+ |pn(to)]

hence {¢,,} is uniformly bounded on I. Also, from (0.20) it follows that {¢,} is equicontinu-
ous on /. From Ascoli’s Lemma, it follows that {¢,,} has a uniformly convergent subsequence
on I, say {¢n,} where ¢, is €, -approximate solution of (0.1). Let ¢,, — ¢ uniformly on
I. Then ¢ is continuous on /. Also,

gp(to) = lim Py (to) = Yo.
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To prove that ¢ satisfies the differential equation on I, we note that ¢, satisfies (0.1) on [
except for finitely many points. Hence we can write

o (1) = 0+ / (F(5:0me(5)) + Ay ()} ds

where

An(s) = ¢, (s) = f(5,¢n,(5)) at where ¢, (s) exists, (0.21)
= 0 otherwise (0.22)



Now taking limit as ny — 00, f(s, ¢n,(s)) = f(s,¢(s)) and ft';{f(s, ©n,.(5)) ds — ft';{f(s, ©(s))ds
since ¢,,, —  uniformly on /. While since ¢, is an ¢,, approximate solution

t t
/ A(s)]ds = / 16, (8) — F(5, pm ()] ds < et —to] 0 as g — oo.
to to

It follows that ¢ is solution of (0.1).



