
Theorem 0.1. (Existence of ε-approximate solution ) Let f be a continuous function defined
on the rectangle

R := {(t, y) : |t− t0| ≤ a, |y − y0| ≤ b}.

Given ε > 0 there exists an ε-approximate solution ϕ of the initial value problem

dy
dt

= f(t, y(t))
y(t0) = y0

}
(0.1)

defined on an interval I = (t0, η, t0 + η) such that

|ϕ(t)− ϕ(s)| < M |t− s| for all s, t ∈ I (0.2)

where M = supR |f(t, y)|, i.e., ϕ is Lipshcitz continuous on I.

Proof. Recall that ϕ is said to be an ε- approximate solution of (0.1) on an interval I if
(i) ϕ is continuous on I with (t, ϕ(t)) ∈ R;
(ii) ϕ is C1 on I except possibly on a finite set of points S on I, where ϕ′ may be discontinuous;
(iii) ϕ′(t) − f(t, ϕ(t))| ≤ ε on I \ S. We will construct a piecewise linear ε approximate
solution. First, the solution will be constructed to the right of t0.

Step I: Draw a line segment

l(s) = y0 + f(t0, y0)(t− t0)

through the point (t0, y0). We see that l(s) ∈ R if

|s− t0| ≤ a (0.3)

and
|l(s)− y0| = |f(t0, y0)||t− t0| ≤M |t− t0| ≤Mδ ≤ b

if we choose η ≤ min{a, b
M
}. Now consider the interval I = [t0−η, t0+η]. Since R closed and

bounded set and f is continuous on R and thus uniformly continuous. Hence given ε > 0,
there exists δ1 > 0 such that

|f(t, y)− f(s, x)| < ε whenever |t− s| < δ1, |y − x| < δ1. (0.4)

Let

δ < min{δ1,
δ1
M
} (0.5)

Divide the interval [t0, t0 + η] into subintervals of length less than δ by choosing points

t0 < t1 < t2 < . . . < tn = t0 + η
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such that |ti − ti−1| < δ for each i = 1, . . . , n. Define

ϕ1(s) = l(s) = y0 + f(t0, y0)(t− t0) for t0 ≤ s ≤ t1 (0.6)

ϕ2(s) = y1 + f(t1, y1)(t− t1) for s ∈ [t1, t2] where y1 = ϕ1(t1) (0.7)

In general, denote yi−1 = ϕi−1(ti−1) and define

ϕi(s) = yi−1 + f(ti−1, yi−1)(t− ti−1) for s ∈ [ti−1, ti] for i = 1, . . . , n. (0.8)

Let
ϕ(s) = ϕi(s) for s ∈ [ti−1.ti], 1 ≤ i ≤ n. (0.9)

Step II ϕ is an ε- approximate solution of (0.1). Let s, t ∈ I and s ∈ [ti−1, ti], t ∈ [tj−1, tj]
with i < j.

|ϕ(t)− ϕ(s)|
≤ |ϕ(t)− ϕ(tj−1)|+ |ϕ(tj−1)− ϕ(tj−2)|+ . . .+ |ϕ(ti)− ϕ(s)|
≤ |f(tj−1, yj−1)|(t− tj−1) + |f(tj−2, yj−2)|(tj−1 − tj−2) + . . .+ |f(ti−1, yi−1)|(ti − s)
≤ M(t− s) (0.10)

In particular, ϕ is continuous. Also, from definition since ϕ = ϕi on [ti−1, ti], ϕ is C1 on I \S
where S = {t1, t2, . . . , tn = t0 − η}. From (0.10) and since η < b

M
it follows that

(t, ϕ(t)) ∈ R for all t ∈ I.

For s ∈ I, say s ∈ [ti−1, ti], ϕ
′(s) = ϕ′i(s) = f(ti−1, yi−1) = f(ti−1, ϕ(ti−1)) and hence

|ϕ′(s)− f(s, ϕ(s))| = |f(ti−1, ϕ(ti−1))− f(s, ϕi(s))| ≤ ε (0.11)

since
|ϕi(s)− ϕ(ti−1)| ≤M |s− ti−1| ≤ δ1

Similarly, ϕ can be extended to the left of t0.

Lemma 0.2. (Ascoli’s lemma) Let I be a bounded interval and F = {f} be an infinite,
uniformly bounded, equicontinuous set of functions. Then F contains a sequence {fn}, n =
1, 2, 3, . . . which is uniformly convergent on I.

Proof: List the rationals in Q as {rk}, k = 1, 2, 3, . . .. Let A1 = {f(r1) : f ∈ F , k =
1, 2, 3, . . .}. Since F is uniformly bounded, there exists M > 0 such that

|f(x)| ≤M for all x ∈ I, for all f ∈ F . (0.12)
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Then A1 is an infinite set of real numbers bounded in I and hence has a convergent subse-
quence, say f11(r1), f21(r1), f31(r1), . . . fk1(r1).... Let

F1 := {fk1}k∈IN .

Again, A2 := {fk1(r2) : k = 1, 2, 3, . . .} is a bounded set of real numbers and hence has a
convergent subsequence, {fk2}k∈IN . Let

F2 := {fk2}k∈IN ⊂ F1.

Continuing thus we obtain sets

Fj := {fkj}k∈IN ⊂ Fj−1 ⊂ Fj−2 ⊂ . . . ⊂ F2 ⊂ F1

with the property that

{fkj(ri)} is convergent for all i ≤ j. (0.13)

Now define the sequence of functions

fk = fkk, k = 1, 2, 3, . . . . (0.14)

Claim: {fk}k∈IN is uniformly convergent on I.
We show that {fk} is uniformly Cauchy sequence. Since F is equicontinuous, given ε > 0
there exists δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε for all f ∈ F . (0.15)

Let x ∈ I and rj ∈ Q such that
|x− rj| < δ.

Then
|fk(x)− fk(rj)| < ε.

Also, since {fk(rj)}k = {fkk(rj)}k is convergent for all k ≥ j, given ε > 0 there exists n0

such that for all m, n ≥ n0,
|fm(rj)− fn(rj)| < ε.

Thus, for m, n ≥ n0

|fn(x)− fm(x)| = |fn(x)− fn(rj) + fn(rj)− fm(rj) + fm(rj)− fm(x)|
≤ |fn(x)− fn(rj)|+ |fn(rj)− fm(rj)|+ |fm(rj)− fm(x)|
< ε+ ε+ ε = 3ε.

3



Theorem 0.3. (Cauchy-Peano Existence theorem:) If f is a continuous function on a
rectangle R, then there exists a solution ϕ ∈ C1 of (0.1) on |t− t0| ≤ η for which ϕ(t0) = y0.

Proof. Let εn > 0 denote a decreasing of positive numbers such that εn → 0. Let ϕn

denote εn-approximate solution of (0.1) which exists on an interval I = [t0− η, t0 + η] where
η = min{a, b

M
} from Theorem 0.1 which was contructed as piecewise linear path as

ϕn(s) = ϕn,i(s) for s ∈ [ti−1.ti], 1 ≤ i ≤ n (0.16)

where

ϕn,1(s) = l(s) = y0 + f(t0, y0)(t− t0) for t0 ≤ s ≤ t1 (0.17)

ϕ2,n(s) = y1 + f(t1, y1)(t− t1) for s ∈ [t1, t2] where y1 = ϕ1(t1) (0.18)

in general, denote yi−1 = ϕi−1(ti−1) and define

ϕn,i(s) = yi−1 + f(ti−1, yi−1)(t− ti−1) for s ∈ [ti−1, ti] for i = 1, . . . , n. (0.19)

Here Sn is a finite set of points where the function ϕn is discontinuous. For all n, each ϕn

satisfies
|ϕn(t)− ϕn(s)| < M |t− s| for all s, t ∈ I (0.20)

where M = sup
R
|f(t, y)|, i.e., ϕn is Lipshcitz continuous on I. In particular, for t ∈ I,

|ϕn(t)| = |ϕn(t)− ϕn(t0) + ϕn(t0)| ≤ |ϕn(t)− ϕn(t0)|+ |ϕn(t0)|
< M |t− t0|+ |ϕn(t0)| < Mη + |ϕn(t0)|

hence {ϕn} is uniformly bounded on I. Also, from (0.20) it follows that {ϕn} is equicontinu-
ous on I. From Ascoli’s Lemma, it follows that {ϕn} has a uniformly convergent subsequence
on I, say {ϕnk

} where ϕnk
is εnk

-approximate solution of (0.1). Let ϕnk
→ ϕ uniformly on

I. Then ϕ is continuous on I. Also,

ϕ(t0) = lim
nk→∞

ϕnk
(t0) = y0.

To prove that ϕ satisfies the differential equation on I, we note that ϕnk
satisfies (0.1) on I

except for finitely many points. Hence we can write

ϕnk
(t) = y0 +

∫ t

t0

{f(s, ϕnk
(s)) + ∆nk

(s)} ds

where

∆n(s) = ϕ′nk
(s)− f(s, ϕnk

(s)) at where ϕ′nk
(s) exists, (0.21)

= 0 otherwise (0.22)
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Now taking limit as nk →∞, f(s, ϕnk
(s))→ f(s, ϕ(s)) and

∫ t

t0
{f(s, ϕnk

(s)) ds→
∫ t

t0
{f(s, ϕ(s)) ds

since ϕnk
→ ϕ uniformly on I. While since ϕnk

is an εnk
approximate solution∫ t

t0

|∆n(s)| ds =

∫ t

t0

|ϕ′nk
(s)− f(s, ϕnk

(s))| ds ≤ εnk
|t− t0| → 0 as nk →∞.

It follows that ϕ is solution of (0.1).
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